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Diffusion from a continuous source near a surface 
in steady reversing shear flow 
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Silver Street, Cambridge CB3 9EW 
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The dispersion of continuous emissions from a line-source in a reversed-flow layer is 
analysed by means of diffusion equations; a family of exact solutions is found in the 
form of infinite series and/or integrals. It is shown that the concentration within the 
layer decays exponentially with the streamwise distance in the direction of reversed 
flow. The ground-level concentration near the source is found to be governed largely 
by the local mean flow; the value of the diffusivity affects the position of the 
maximum of ground-level concentration, but has little influence upon its magnitude. 
A useful upper limit is deduced for the background concentration due to recirculation 
effects. Further, a simple formula is given for the maximum value of the ground-level 
concentration for c m s  where the source is not too near the ground. The predictions 
for ground-level concentration are validated against experimental data for the 
particular case of a line source in the recirculating wake behind a two-dimensional 
backward-facing step. The extension of the analysis to the case of a point source is 
also discussed. 

1. Introduction 
It is well known (Taylor 1953) that the incorporation of shear into the mean-flow 

profile in a diffusion problem can have radical effects upon the concentration field 
established. Taylor’s (1953) original calculation demonstrated this, in the context of 
turbulent pipe flow, by an asymptotic analysis. Several exact solutions have since 
been found for related situations. For example, the problem of an instantaneous point 
release into an unbounded uniform shear flow is solved (among others) by Elrick 
(1962). Solutions for a continuous source obtained by integrating the Elrick (1962) 
solution, are presented by Okubo & Karweit (1969). All these solutions show the 
characteristic ‘stretching’ of the puffs or plumes in the streamwise direction. 

For the case of a unidirectional shear flow near a non-absorbing surface, Smith 
(1957) and Kay (1985) have presented whole families of solutions which illustrate the 
strong influence of the mean shear in determining, for example, the position and 
magnitude of the maximum ground-level concentration. 

An interesting problem emerges when we extend the problem of Smith (1957) to the 
case of a steady reversing shear-flow, for in such a c m  the source is not releasing 
contaminant into clean ambient fluid but into fluid containing recirculated contami- 
nant. It is on this case that our attention will be focused in the present paper. 

The type of fluid-flow configuration we have in mind (see figure 1) is that of a 
boundary layer with a reversed-flow layer immediately adjacent to the boundary. 
It is one which arises in a large number of environmental and industrial contexts. 
Some environmental applications are the flow in the recirculating wake behind a 
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FIGURE 1. Definition sketch for reversing flow near a boundary. 

fence, steep hill or wide building, the sea-breeze problem where a buoyancy-driven 
cold layer of sea-air can flow inland against an adverse mean flow above, and the 
situation where an estuarine flow separates from the bank downstream of a sharp 
bend ; on a larger scale there is also the density-driven exchange between saline and 
fresh water in the world’s oceans. Examples of industrial applications are convective 
flow in a furnace or heated tank, confined jets in combustion chambers and flows in 
mixing vessels driven either mechanically or by bubble rise. 

In  many of these situations it is of importance to understand the mechanism of 
dispersion as well as the flow details. For example, in the case of the flow in the 
recirculating wake behind a building or structure, it  is known (Wilson & Britter 1982) 
that the highest building-surface concentrations result from situating a source of 
contaminant within the recirculating region ; a predictive theory thus appears 
desirable for such situations. 

We consider here the particular problem of a continuously emitting line-source 
located within the reversed-flow layer. We shall use a diffusion equation analysis, to 
suggest what kind of answers should be given to the following questions, concerning 
the concentration field established : 

(i) What and where is the maximum surface concentration, and how much 
influence does the source position have upon our conclusions ? 

(ii) How much contaminant is recirculated and is there an upper limit to this effect ? 
(iii) Is it essential to model the global mean-flow details? 
(iv) How sensitive is the mean concentration distribution to the turbulence levels? 
In  response to the third of these questions, it obviously is important to model the 

global mean flow if this is strongly two- or three-dimensional. But if, as we have 
suggested in figure 1, the streamwise lengthscale of the mean velocity field is much 
greater than the corresponding lengthscale, A, normal to the surface, it is posaible 
that a model incorporating only horizontal mean motion will be adequate for some 
purposes. More specifically, if the plume from the source fills the reversed layer before 
the horizontal (or vertical) mean velocity changes substantially, and if the vertical 
mean velocity is small, then we may be justified in ignoring the vertical mean motions. 
Throughout our analysis we shall suppose such a slow horizontal variation, expressed 
mathematically by the condition K ~ L / U ,  % @, where U, is a typical backflow 
velocity and K, is an effective turbulent diffusivity. By assuming that the answer to 
(iii) is negative, we propose a model with purely streamwise mean flow. This allows 
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analytical solutions to be found for the diffusion equation, which can then be used 
to suggest answers to questions (i), (ii) and (iv). The validity of our approach is tested 
by comparing predicted ground-level concentrations with data from a wind-tunnel 
experiment carried out for a porous line-source positioned in the recirculating wake 
behind a backward-facing step (unpublished observations of Quante & Etheridge 
documented by Turfus 1985). 

The diffusion-equation solution procedure is described in $2, the main conclusions 
of which are expressed in equations (2.12), (2.16) and (2.21). These solutions are used 
to investigate the sensitivity of the mean concentration field to the various flow 
parameters in $$3 and 4. In  $5, the extension of the analysis to point sources is 
discussed and some of the associated difficulties pointed out. Finally, $6 draws 
together some conclusions. 

2. Diffusion equation solution 

analysis, we shall be relying on two basic assumptions : 
In attempting to model dispersion in a recirculating flow by diffusion-equation 

(i) that the gradient-flux relation holds, i.e. 

where ui(2, t )  is the ith component of the velocity of the fluid into which 
contaminant is released, c(2, t )  is the instantaneous distribution of contaminant 
concentration resulting from an established line source, ~ ~ ~ ( 2 )  is the diffusivity 
tensor assumed to be dependent only on the statistical properties of u(2, t ) ,  and 
the overbar denotes ensemble averaging ;t 

(ii) the assumption, discussed above, that the mean vertical motions can be 
neglected in the centre of the wake, i.e. the answer to question (iii) in $ 1  is 
negative. 

Neither of these assumptions can be strictly justified apriori. It has frequently been 
shown (see e.g. Corrsin 1974) that the strict conditions for (i) to apply are virtually 
never satisfied in practical applications. Nevertheless useful results are frequently 
found. We thus proceed by supposing that (i) and (ii) are not inappropriate, then test 
our assumptions a posteriori by comparison of the results obtained with experimental 
data. It will be seen that as far as ground-level concentrations are concerned our 
procedure appears to be validated. 

Based on (2.1) a standard diffusion equation representation of the dispersion from 
a line-source strength Q at position $J = (0, -$ao) can be derived: 

- With boundary conditions 

O+O as ($:+$$+a~, 

and 

- 
at? 

w a$, K - = 0 on the surface $3 = -h.  

( 2 . 3 ~ )  

(2.3b) 

Since we are considering a line source in a two-dimensional mean flow, we can ignore 
all spanwise ($*-) gradients. We make the further simplifications of assuming that 

t It is further assumed that all functions are statistically stationary in time, 
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FIGURE 2. Definition sketch for general diffusion problems with power-law profiles. 

- u = (El($,), 0,O) and that K~~ = 0, i =k j with K~~ = K ,  a constant and K~~ = EIK, where 
Ealso is a constant, in practice set equal to either 0 or 1. Equation (2.2) then becomes 

We assume the velocity profile El(&,) has a power-law form: 
- 
~1(33) = -U1(6,I’ ( - h  < $3 < 0 1 ,  

= U26i  (6, > O ) ,  

so flow reversal occurs at  2, = 0 and the reverse-flow layer has thickness 6 (see figure 

We introduce the following non-dimensionalization, in terms of a typical vertical 
2). 

lengthscale 8: 
g3 = zA; 3,, = z,A; 6 = hH; 32 = YH; 

in terms of which (2.3)-(2.5) become 

(2.6a) 

(2.6b) 

with (2.7a) 

_ -  - 0  o n ~ = - h ,  ac 
aZ (2.7b) 

where r = U,/ U,.  
The reader not interested in the mathematical details of the solution of this 

diffusion equation may omit the remainder of this section, the major results of which 
are expressed in (2.12), (2.16) and (2.21). 

This problem as it stands is similar to those considered by Smith (1957) and Kay 
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(1985), except that in those cases there was no flow reversal. As i t  turns out, this 
reversal makes a critical difference to the solution procedure ; the straightforward 
Laplace transform method adopted by these authors becomes inapplicable in our case. 
The reason for this is that the boundary condition at x = 0 required for the solutions 
in x < 0 and x > 0 is unknown. Ludford & Robertson (1973) encountered this same 
difficulty in dealing with a related problem. Their paper considers the diffusion of 
heat in a parallel reversing flow between two planes, the diffusion in their case being 
forced by a step-function distribution of temperature on one of the planes. They note 
that the problem could be solved by means of a full Fourier transform, but choose 
to solve it as two Laplace transform problems with unknown boundary condition at 
x = 0. By matching the two resultant solutions at x = 0, they are then able to 
calculate the unknown common boundary condition. This latter method, they 
explain, has broader application than the Fourier transform method. However, we 
shall in this instance adopt the former, more straightforward approach, taking a full 
Fourier transform of the concentration field : 

in terms of which (2.6) and (2.7) become 

with C+O asz+oo, 

( - h < z < O ) ,  ( 2 . 8 ~ )  

(2.8b) 

(2.9a) 

- 0  onz=-h .  (2.9b) 

We shall deal separately with the cases /3 = 0 and 0 < /3 < 1 because of the special 
simplifying features of the former, corresponding as it does to two uniform layers. 
For most purposes we shall set + = 0, but we shall-illustrate, using the particular case 
/3 = 1, how a non-zero value can in general be incorporated.? 

In solving the system (2.8) subject to (2.9), the k-plane is cut along the branch 
line arg k = ix. We can then uniquely define a complex number 

which has the convenient property that Re5 > 0. 
We consider first the case /3 = 0 for which we introduce the further notation 

r = tan2 #. Putting 8 = 0 we can obtain a solution for C(k, z )  by standard Green 
function method : 

a0 
az 
_ -  

5 = (ikp = I k It e#(arg k e n )  

( - h  < z < - zo ) ,  (2.10a) cos ( - 5Zo + $) cos (E(h + 2)) O(k, Z) = - 
2x5 sin(& - 6) 

= -  cos(&+#) cos(f;(h-z,)) (-%, < < o), 
2x5 sin (5h-4) 

exp (-62 tan$) cos ([(h-z,,)) 
2x5 sin (Eh - #) 

- _ -  cos$ ( z > O ) ,  (2.10c) 

(2.10b) 

where the definition of 6 ensures that c+O as I-+ 00. 

cases only vertical diffusion is important, with horizontal spread dominated by advection. 
t The setting of 8 = 0 is consistent with our previous assumption that K, C / U ,  B fiz, for in such 

7 F L Y  172 
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FIGURE 3. Contour manipulations in k-, 5- and u-space. - , original contour;--c-, deformed 
contour for 5 < O  (Cl);--+-., deformed contour for x > 0 (C2); -, branch cut. 

In  order to inverse transform these expressions, we consider separately the regions 
x < 0 and x > 0. For the former case the inversion integral 

00 

C(x, z )  = J-, 6(k ,  z )  eikzdk, (2.11) 

can be written in terms of fl  as two integrals from ‘ 00 e-fin ’ to 0 and from 0 to ‘ 00 eiin ’. 
We can by appeal to Cauchy’s theorem replace these two integrals by a single integral 
along the contour C,  depicted in figure 3 for the k-plane and the &-plane. (Note that 
all the poles of 6 lie on the negative imaginary k-axis or positive real [-axis.) Thus, 
in terms of f l :  

C(x ,  z )  = Jclc( -itz, z )  ef’”[d&. 
2 

This integral can in turn be replaced, via Cauchy’s residue theorem, by 

C(z, z )  = 4n: Z residue of @?( -igZ, z )  at A, eAiz, 
n-o * {  I. 

with the summation evaluated over all the poles An = (nn: + # ) / h  of 6b.t 
The solution is then: 

2 “ o  C(x,z) = - cosAn(h-zo) cosA,(h+z) eAkz (x < 0; -h < z < - z o ) .  ( 2 . 1 2 ~ )  

We note that by the reciprocal theorem of Smith (1957), the roles of z and the source 
height -zo can be interchanged to obtain a solution valid for - z o  < z < 0. In fact 
the solution, being symmetric, does not change, so we conclude ( 2 . 1 2 ~ )  is valid for 
-h < z < 0, as can be verified by direct computation from (2.10b). 

h n-o 

t The minus sign appears because the poles are circumnavigated in a clockwise sense. 
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By similar means, (2.10~) can be shown to yield 

200 C(Z,Z) = - X cosAn(h-zo) COSA, h e-tan+Anz eAgz (Z < 0;  z > 0). (2.1%) 

To solve for x > 0 we use a contour manipulation similar to the one just described 
to turn the integral (2.11) into a real expression. The contour used is that denoted 
C, in figure 3. On C,, ik is real and negative, so that the integrand again decays 
exponentially as x --f co . In terms of u = E e-tiK 

h n-o 

CO 

C(Z, z )  = 2ie(iu2, z )  e-upz u du = 2i d(iuz, z )  e-rPzudu. 
JC, I-, 

It can be seen that replacing u by u ei" maps 6 to d*, where * denotes complex- 
conjugate. Hence 

C(z, z )  = Re 4iC?(iu2, z )  e-upz u du. lom (2.13) 

Considering first - h  < z < -zo, we note that (2.10a) can be expressed in terms of 
u as: 

cosh (uz, + i4) cosh (u(h + z ) )  
2 ~ u  sinh (uh + i4) 

C(k,z) = 

[sinh (u(h+z,))+sinh (u(h-2,)) cos24-i cosh (u(h-2,)) sin2$] - - cosh (u(h+z)), 
~ R U (  C O S ~  (2uh) - cos 24) 

and substituting into (2.13) and taking the real part: 

cosh (u(h- zo) )  cosh (u(h+ z ) )  sin 24 e-u'z 
C(z, 2) = - du (Z > 0, - h  < z < - z 0 ) .  cash (2uh)- ~ 0 ~ 2 4  

(2.14a) 

Again, from symmetry we see that this result must hold for -h  < z < 0. Finally 
from (2 .10~)  we have 

,5 
C(Z, z )  = - J [cosh (uh) cos (uz tan 4) sin 24 + 2 sinh (uh) sin (uz tan$) cos2 41 

n o  
cosh (u(h-2,)) e-upz 

X du (x > 0, z > 0). (2.14b) 
cash (2uh) - cos 24 

Equations (2.12) and (2.14) together constitute a complete solution to the problem. 
We note in conclusion that (2 .14~)  can be re-expressed as an infinite series which 

is useful for evaluations in the near field (small z), but which is also physically 
revealing concerning the structure of our solution. We show this by expanding the 
denominator as 

00 [in1 n-r 
[cosh (2uh) - cos 241-l = 2 X e-zuh(n+l) C ( ) ( -)r(2 cos 24)n-2r. 

n-0 r-o 

This allows us to expand the integrand (2.14a) as an infinite sum, each term of which 
can be analytically integrated. In  terms of 
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the result is 

1 2(n+ 1)  h k ( h + q  f (h-2 , )  ) (Z > 0, - h  < z < 0). (2.15) 
(42): 

i- -+ __  
The solution takes the form of an infinite array of ‘distributed’ sources and sinks 

of contaminant, located above z = 0 or below z = - h ;  these are positioned regularly 
a t  heights 

2, = -z0)2(n+ 1 ) h  

= z0+2nh 

= z0-2(n+2)h. 

It is worth noting that no effective source term appears corresponding to the real 
source a t  z = - zo : since our model has no horizontal diffusivity, contaminant cannot 
pass from the source directly to  the region x > 0 but must first diffuse into the upper 
layer, be advected downstream, then diffuse down again. This constitutes an 
inadequacy of our model in this near-source region. 

We consider further asymptotic analyses of the above solution in $4 and now turn 
our attention instead to the problem with general /3. The details of the solution of 
this problem and the notation necessary to express the answer are a little involved 
so have been reproduced in the Appendix. Essentially the method is the same as that 
described for /3 = 0. 

We do reproduce here, however, a particular form of the solution for the case /3 = 1 ; 
all cases of physical interest should have values of /3 between this value (corresponding 
to a linear shear) and the value /3 = 0 already discussed. The /3 = 1 solution has a 
particularly straightforward formulation in terms of the well-tabulated Airy functions, 
when u1 = u2 (r= 1) .  

If the zeros of the derivative of the Airy function Ai’(x) are {uh ; n = 1,2, . . .} then 
the solution can be written 

( 2 . 1 6 ~ )  

[Ai(uzo) Bi’(uh) - Bi(uzo) Ai’(uh)] 
00 

= 35 0 Ai’(uh)2 + Bi‘(uh)2 
x [Ai( - uz) Bi’(uh) - Bi( - uz) Ai’(uh)] - 

e u3xu du (Z > 0). (2.166) 

Because of the convenient form of this solution, we use i t  to illustrate how our 
solution procedure can be extended to incorporate streamwise diffusivity. Thus we 
shall solve the non-dimensional system 

zcx-€Cx,-cczz = 6 ( Z ) 6 ( Z + Z 0 ) ,  (2.17) 

with boundary conditions given by (2.7), where subscripts x, y and z are used to 
denote partial differentiation with respect to these variables. On Fourier 
transforming, (2.17) becomes 

d(Z + 20)  (izk+sk2)C-Ozz = ~ 

2x . (2.18) 
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The solution can be written in terms of the function 

s(z )  = (ik)i(z-sik) 

(see Pedley 1980, p. 406), as 

(2.19) 

Bi’(s( - h ) )  
2(ik)i Ai’(s( + h ) )  

Ai(s( - ‘ 0 ) )  { Bi( - Ai(s(z))} ( - h  < z < - z o ) .  (2.20) C(k,z) = 

A symmetric result with s( - z o )  exchanged with s(z) holds for z > -zo.  As before 
we apply a branch cut to the k-plane at arg k = in, so that I arg ( 8 )  I < in for z > 0 
and t?(k,z)+O as z+ 00. Using (2.20) in (2.11), distorting the k-integration onto C,  
as before and setting t = (ik)i, we obtain 

3t 
C(z,z) = 2ni Z -Ai(t(z-st3)) Ai(t( --zO-d3)) Bi’(t( -h-st3)) etSz 

Residues 2i 
w.r.t. t 

Ai( - t,(zo + et:)) Ai( - t,( - z+ ,st:)) etfz 
= 3  Z (x < 017 (2.21) 

r-1 (h+~t:)(h+4d:)Ai( 

where the a; are as defined for equation (2 .16~)  and the t,  satisfy 

(h  + E t : )  tr = a;. 

A similar solution of the form of (2.16b) can be derived for x > 0 but is less useful 
than (2.21), so not quoted here. 

3. Evaluation of results 
In order to test the usefulness of our diffusion-equation model of wake dispersion, 

we carry out some evaluations of the formulae derived in $2, scaled so as to 
correspond as closely as possible with an experimental configuration for which data 
are available. The configuration we have in mind is that of a line source placed in 
the recirculating wake behind a two-dimensional backward-facing step at high Re. 
Quante & Etheridge (unpublished observations) have made measurements for such 
a situation where the line-source is positioned a t  2.4 step heights downstream of the 
step and at a height of 0.4 step-heights above ground level. Their results for mean 
concentration are presented by Turfus (1985) in comparison with his numerical 
results, obtained by a trajectory simulation technique involving a discrete vortex 
model. Flow statistics were not measured by Quante & Etheridge, so we rely mainly 
upon the computed flow statistics of Turfus (1985) in the vicinity of the source to 
parameterize our diffusion-equation model. He found that the mean horizontal flow 
reversed at  a height of about 0.5A, I? being the step height (see figure 4) and reached 
a minimum of about -0.2 U, at the ground, where U ,  is the mean free-stream speed, 
far from the wall. The notation A has already been introduced (in the non- 
dimensionalization leading to  (2.6)) to denote a vertical lengthscale for diffusion. We 
shall henceforth consider this ‘vertical lengthscale’ to be precisely the step height. 
In  addition, he found a vertical velocity variance of 0.01 V, and Lagrangian 
timescale, cw, based on vertical velocity fluctuations, of 1.0 Alum, for the source 
position, leading to the following estimate of vertical turbulent diffusivity : 

Ke = CTk Ew Z 0.01 u, A. 
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FIGURE 4. Horizontal mean velocity profile at source position lAPII = 2.5 behind 
backward-facing step, compared with idealized profiles used in diffusion equation. x , @,(2,) from 
discrete vortex model ; -, idealized profiles used in the diffusion equation. 

Thus we propose setting K = 0.01 U,l? in (2.4). As an approximation to the 
derived from the discrete vortex model of Turfus (1985), we mean-flow profile 

consider two choices : 

(i) /3 = 0; U, = 0.1 U,, U,  = U ,  (a step profile), 

0.4 U ,  
(ii) /3= 1; U , =  U = (a linear profile), 

both shown in figure 4. 
We further set h = 0.5 fl and 230 = 0.1 I?, so that h = 0.5, zo = 0.1 in the non- 

dimensional notation. 
For purpxoses of standardization we present all concentrations in the form 

x($,, 2*) = CU,  f l / Q  and we use dimensional variables. 
As an illustration of the form of our solution, we have calculated ~ ( 2 ~ ,  &) for case 

(ii) with E^ = 0 (no streamwise diffusivity). The result is shown in the form of 
concentration isopleths for - 2.0 l? < 2, < 0, - 0.5 I? < $8 < 0.5 fl in figure 5. It will 
be noted how the plume ‘dips’ as one moves leftwards from the source, due to 
contaminant being swept away to the right in the upper layer. However, near the 
surface, a tongue of contaminant can be seen stretching leftwards from the source, 
as a result of the recirculated contribution. 

As a quantitative test of our diffusion equation solutions we consider ground-level 
concentrations, calculated for the /3 = 0 profile specified above, with i. = 0 (equation 
(2.12a)), and for the /3 = 1 profile, with 8 = 0 (equation (2.16a)), and with k = 1 
(equation (2.21)). 

We have chosen to focus on ground-level concentrations for the following two 
reasons : 

(i) near the surface the timescale of velocity fluctuations becomes small so that 
a particle’s velocity can be considered independent of the velocity imparted 
on leaving the source, as is implicitly assumed in all diffusion-equation 
calculations ; 

, A  
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-0.5 
-2.0 - 1.0 U 

- 4 
B 

FIQURE 5. Concentration isopleths ~ ( 2 ~ , 2 , )  for a line source in a reversing uniform shear flow. 

-2.0 - 1.5 - 1.0 -0.5 0 
i , / H  

FIQURE 6. Ground-level concentrations for various diffusion approximations. x , experiment 
(Quante & Etheridge 1984). 1. - - -, uniform non-reversing flow without streamwise diffusion 
( 6 ~  0); 2. -.-.-., uniform non-reversing flow with streamwise diffusion ( E l =  1); 3. -, 
equation (2 .16~)  ( z  = - h )  i.e. fi  = 1 ,  k =  0; 4. -----, equation (2.21) ( z  = -h)  i.e. B = 1, k =  1; 
5,  . . . . .  , equation (2 .12~)  (z = -h)  i.e. f i  = 0, El= 0. 

(ii) ground-level or surface concentrations are often the quantities of greatest 
interest in practical applications, such as deposition, heat exchange and air 
pollution. 

We have also considered the ground-level concentration resulting when the 
backflow of - 0.1 U ,  in the 8 = 0 model is extended to z = 00, rather than reversing 
at z = 0. Standard solutions exist for this problem with and without horizontal 
diffusivity (see e.g. Csanady 1973). Both these solutions are presented along with our 
three new solutions in figure 6 in comparison with the experimental points of Quante 
& Etheridge (unpublished observations). The comparison is quite revealing. 

In the first place the diffusion-equation models which do not incorporate flow 
reversal give the poorest results (curves 1 and 2), underestimating the magnitude of 
the concentration maximum by 40 % . Of the other models, the 8 = 1 models (curves 
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-2.0 -1 .5 - 1.0 -0.5 0 

i , / H  

FIGURE 7. Ground-level concentrations obtained from ( 2 . 1 2 ~ )  with varying velocity in the upper 
layer. ---- , U,/U, = 0.1; -.-.- , u,/u, =0.4; - - - - (  UJU, = 1.0; . . . . ' ' " ,  
U 2 / U ,  = 4.0; -, U a / U ,  = 10.0. 

3 and 4) appear best, predicting fairly accurately both the position and the magnitude 
of the maximum ground-level concentration, whether or not horizontal diffusivity is 
incorporated. For the /3 = 0 case (curve 5) the maximum ground-level concen- 
tration is once more under-predicted, this time by 25 yo ; in addition this maximum 
is predicted too near the source. It might be suggested that the under-prediction 
occurring for this latter case results from the associated over-prediction of the flow 
in the upper layer (see figure 4). However a further calculation in which the value 
of U, in the /3 = 0 model is reduced arbitrarily from U ,  to 0.4 U ,  (see below and 
figure 7),  while yielding a much improved estimate of the value of the maximum of 
ground-level concentration, shows little improvement in the associated estimate of 
its streamwise position. 

We conclude that : 
(i) the models with reversing mean-flow profiles predict the ground-level concen- 

tration better than do those with unidirectional mean flow; 
(ii) of the reversing profiles considered, the uniform shear (which profile is the 

closer to the real flow in the reversed layer) appears to be a better model than 
the step profile ; 

(iii) equation (2.4) may indeed prove useful for the estimation of surface concen- 
trations in two-dimensional recirculating wakes for which the ratio of horizontal 
to vertical lengthscales is sufficiently large. 

Thus our assumptions (i) and (ii) made in $2 appear to be acceptable, although 
it might be noted that the mathematical condition K ~ L / U ~ ~ ~ ~  9 1, shown in $1 to 
be required for (ii) to hold in general, is not strictly satisfied; in our case 

On this basis i t  seems worthwhile to use our diffusion-equation model with other 
parameter settings in order to probe the sensitivity of the dispersion process to these 
parameters. 
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FIGURE 8. Ground-level concentrations obtained from (2.16a) for various source heights. ----, 
- a,/A 

h,/h = 0.2; . . . * * ,  h,/h = 0.5; ----, h,/h = 0.8; -, h,/h = 1.0. 

First we consider the effect of varying U2/Ul(  = tan2 4) in the /3 = 0 model. Figure 
7 reveals that ground-level concentration is in fact a monotonically decreasing 
function of this parameter, as was suggested above: the effect of an increase in 
velocity in the upper layer is to remove contaminant more efficiently from the lower 
layer. We note that as U 2 / U l + o  the ground-level concentration tends to reach a 
plateau at  around x = 40, i.e. 6 = 2&/U1i for g1 2 0.07. The reason for this is 
discussed in the analysis of $4 below. 

In order to answer our question (i) of $ 1 we consider the dependence of ground-level 
concentration on source height. This dependence has been studied, using the /3 = 1 
model, by varying the assumed source height h, = (h-z,). Figure 8 shows the 
conclusions as plots of ground-level concentration for various values of the parameter 
h,/h. (Note: the source position depicted in figure 6 corresponds to h,/h = 0.8). Two 
trends are evident: 

(i) lower source heights produce higher ground-level concentrations in the far field 
but lower ground-level concentrations in the vicinity of the source ; 

(ii) lowering the source height tends to bring the position of the maximum 
ground-level concentration closer to the source region. 

The reason for the counter-intuitive tendency for the ground-level concentration 
immediately below the source to decrease as the source height is decreased is that, 
in the absence of longitudinal diffusion, this concentration results solely from 
recirculated contributions. A lowering of the source height causes contaminant to take 
longer to escape from the reversed layer; recirculation consequently becomes less 
efficient. 

The two trends are displayed more clearly in figure 9 where xm, the maximum 
ground-level concentration and gm, the streamwise distance from the source at which 
this occurs are plotted as functions of hJh. We see that in fact for h,/h 2 0.75 gm 
starts to decrease again, contrary to the apparent trend evident in figure 8. This is 
a consequence of the counterflow in z > 0 making itself increasingly felt. 

From the form of this graph some useful conclusions can be made of a rule-of-thumb 
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type. Firstly we see that for h,/h 2 0.5, xrn and 2m are roughly constant a t  around 
20 and 0.6 H respectively. In terms of dimensional parameters, we therefore suggest 
the estimates 
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ern II 
where 8 denotes the mean shear in the reversed layer under consideration. 

Secondly, for hs/h 5 0.3 a sharp rise in xm is evident; the suggestion is that for 
sources in the lowest one-third of the reversed layer, high peaks of ground-level 
concentration can be expected.t Location of sources in this lower region should thus 
be avoided in applications involving sources of pollution. 

In order to probe the sensitivity of mean concentrations to turbulence levels in 
response to question (iv) in § 1, we consider the effect of varying diffusivity, focusing 
first on streamwise diffusion. Important as this is in determining correctly the 
ground-level concentration below the source without recirculation (compare curves 
1 and 2 and curves 3 and 4 in figure 6), it  is found to have less effect on the magnitude 
or the position of the maximum ground-level concentration except when h,/h 
becomes small ( 5 0.3). 

Also, considering the form of our diffusion equation without streamwise diffusion 
(t = 0) ,  we note that the magnitude of the diffusivity does not itself affect the 
calculation except in the non-dimensionalization of the streamwise coordinate, 2,. 
This leads us to the general conclusion that turbulence levels do not have a critical 
effect on the maximum ground-level concentration, but influence mainly just the 
position a t  which this occurs. In particular, the concentration profile at = 0 is 
completely independent of K .  

t It should be remembered that near-source effects are poorly modelled by the diffusion equation 
so that the peak ground-level concentrations become unreliable for very low-level releases. 
Nevertheless from more detailed calculations with low-level sources Turfus (1985) has concluded 
that strong peaks of concentration are to be expected. 
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4. Asymptotic analysis 
We have shown how our diffusion-equation solutions from $2 can be used to obtain 

numerical estimates of ground-level and other concentrations. However, it is also 
possible, by asymptotic analysis of our solutions, to draw some general conclusions 
about the structure of the concentration field established in a recirculating flow 
region. We focus on regions far from the source since that is where the diffusion-equation 
approximation is expected to have greatest validity. 

We start with the expression (2.12a), although similar results can be drawn from 
the more general solution (A 9a). Clearly as x becomes large and negative within the 
lower layer, C(x, z) becomes dominated by the n = 0 mode. Thus 

asx+-co,z<O. 

A similar result holds for z > 0. The exponential decay with x reflects the fact that 
even though the maximum of ground-level concentration occurs to the left of the 
source position, ultimately all the contaminant leaves the backward-flowing layer and 
is discharged (at + 00) to the right. Of course in a real recirculating flow the backward 
layer does not extend to -00 but is deflected upwards after a finite length to 
recombine with the ‘upper layer’. The effect is probably not dissimilar from our simple 
model. 

What is of more interest to us, however, is the limit of (4.1) as x+-m but with 
xUz/Ul+O, i.e. xqP+O. Clearly in this case 

( 4 . 2 ~ )  
2 
h’  

C(x,z) - - 
From our calculations in $3 where we saw (figure 7) that C(x, z = - h) increases 

monotonically with UJU, ,  we conclude that this value of 2/h is an asymptotic upper 
limit. It is interesting to compare this solution with that which would be obtained 
were the (almost) stagnant layE for z > 0 replaced by a rigid non-absorbing boundary 
at z = 0. Clearly for this case &21,&J - Q/U,R or in non-dimensional terms 

(4.2b) 

exactly half the result ( 4 . 2 ~ ) .  In fact i t  can be shown that the formal limit of ( 2 . 1 2 ~ )  
as 4+0 is precisely the solution of the ‘rigid-lid’ problem + l/h. The latter term 
represents a uniform concentration in the lower layer to the right of the source. 

With this result we can explain the trend observed in figure 7 as Uz/Ul+O and 
pointed out in $3. For with h = 0.5 and U ,  = 0.1 U,, ( 4 . 2 ~ )  implies x - 40 as 
x+- 00 and (4.2b) implies x - 20 at x = 0 (since x - CU,/U,  for the case /3 = 0). 
Figure 7 indeed appears to be consistent with both these limits. We are thus led to 
the very useful upper limit that for a source strength Q in a layer of depth 8 in which 
the mean flow is given by u, the effect of recirculation is at worst to increase the 
concentration by an amount Q/i%. 

If we consider the same limit applied to (A 9) we find that the concentration of 
recirculated contaminant is l/hl+fl or in dimensional terms = Q/( 1 +B)(G,) 11 where 
(al) is the mean flow averaged across the layer. Clearly /3 = 0 is the worst case of 
this so that our stated upper limit is valid not just for uniform profiles but for all 
power-law profiles of physical interest (/3 2 0). 

1 
h’ 

C(X, 2) - - 
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Thus assuming again that our supposed negative answer to question (iii) (in Q 1 )  is 
correct, we can conclude in response to the remaining question (ii) that the maximum 
possible recirculated flux is equal to precisely the source rate. However it seems safe 
to further conclude from the present calculations that for most flow situations which 
are of practical interest and for which also % B (as in this case), the flux is unlikely 
to exceed about 50% of this figure. 

Considering instead the limit of large and positive x ,  we can obtain results by 
expanding (2 .14);  the corresponding results for power-law profiles are in this case not 
so readily obtained. 

We note first that for z < 0, in the limit x/h2 + co, (x /h2)  ( U2/ U, )  + 00, the term 

cosh (u (h+z ) )  cosh (u(h-zo))  sin2$ 
cosh (2uh) + cos 24 

- cot 4 ( 1  -U2(h2 Cot2 4 + h(zo+ 121) -+(z: + 1zI2)}, 

so that the integral ( 2 . 1 4 ~ )  can be expanded as 

The first term is just the term which would arise a distance x downstream of a point 
source on a rigid boundary z = 0 with U1 = U2 everywhere; the effect of the backflow 
is to introduce a small negative correction = O(l/d). There is an associated 
backward flux of 

F- - (4xU2x/U1)t  -2U'h { l - t ( h 2 ( 2 + i ) + h z o - + z t ) } .  (4.3 b )  

Also relevant to our previous consideration of U 2 / U ,  + O  for x -4 - 1 is the 
corresponding limit for x > 0, z < 0, i.e. 

corresponding to downstream locations for which the distribution in the lower layer 
has reached its far-field form, but for which that in the upper layer has not. In this 
case we must alter our binomial expansion for [cosh (2uh) - COB 241-l and approximate 

sin 4 
u2h2 + sin2 4 ' 

- cash (u (h+z ) )  cosh (u(h-2,))  sin24 
cash (2uh) - cos 24 

so that from (2 .14a) ,  
2 u 2 x  

C(X, 2) - 1 { 1 -- (->:} 
h h Ulx ' 

(4 .4)  

We see that the leading-order solution here is the l / h  term deduced from the analysis 
for x < 0. 

Finally for z > 0 with 

- + G o ;  X 
h2 h2 U, 2x 

- x u L c o ;  -4, hz 

we find 

It can be shown (by calculating higher terms in this series) that the integrated flux sow U2 G(x ,  z )  dz in the upper layer satisfies F+ - 1 - F- to the accuracy to which F- 
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has been calculated in (4.3 b). We note also from the form of this expansion that the 
maximum of C(x,  z) for fixed (large enough) x occurs at a height z - hUl/U2 above 
the reversed layer, rather than on the surface as occurs in the non-reversing case. This 
is because in the present case the establishment of a maximum of concentration at 
the wall is prevented by the continual dilution of the contaminant in the reversed-flow 
layer by cleaner fluid arriving from the right. 

For values of x which are not %h2 and values of z which are not small compared 
with x/h, an asymptotic expansion of C(z, z) as a perturbation about a point source 
solution is not possible; we conclude that in such cases the influence of the 
backward-flowing layer on the spreading of the plume is not small. 

5. Extension to point-source 

analysis to point sources in recirculating flows. The equation 
In this section we consider the possible application of our diffusion-equation 

where 

with C-tO as (x2+y2+z2)f+m, 

and 

does not appear to be soluble analytically for any value of /3. However, we follow 
the expedient of Smith (1957) who approximated the lateral diffusion by assuming 

C,(Z = -h )  = 0, 

where z) is a specified lateral spread and Co(x, z )  is the line-source solution to 
the diffusion equation. Smith (1957) shows that ai(x, z) can be calculated exactly by 
multiplying (5.1) by y2 and integrating with respect to y from - 00 to m to obtain 

the following equation for W 

Q2@, 4 = y2C(x, y, 2) dy: 

u(z) c2,-c2,, = 2C0(x, 2) ( - h  < 2). (5.3) 

Clearly then, in terms of C2(x,  z), 
C2(x, 2) ai(x,z) = ~ 

cocx, 2) * (5.4) 

Equation (5.3) has been solved in the region x < 0 for the U profile with B = 1, 
r = 1, for which Co(x, z) is given by (2.16). The solution is obtained fairly straight- 
forwardly by noting that Co(x, z) is a Green function solution for the operator on the 
left-hand side of (5.3). After some algebra the solution can be written in the form 

O0 e(ablh)sz {, (at,>B Ai(ui z/h)  Ai( - u i  zo/h) 

uduD,(u)[Ai( - u ~ z o / h ) M ( u , z ) - A i ( a ~ z / h ) M ( u l ,  -zO)]} 
[us+ (ai/h)3] [Ai’(uh)2 + B i ’ ( ~ h ) ~ ]  

(ah)2 Ai( - C,(Z,Z) = 18 21 - 
n-1 Ai( -a;)2 

(x -c 01, 

(5.5) 
+ Jo 
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where we have used the notation 

M(u,z): = Ai(-uuz)Bi‘(uh)-Bi( -uz)Ai’(uh), 

20 1 

and D,(u) : = som M(u, 6) Ai r+7 dc. 

The second integral is a little involved but fortunately gives a negligible contribution 
compared with the first expression and so can be ignored except for the smallest values 
of 1.1. 

This expression has been evaluated for the case z = - h and used in conjunction 
with (5.2) and (5.4) to generate estimates of the centreline ground-level concentration 
C(x, 0,-h). These concentrations are plotted in terms of the standardized variable 
x~~ = CU,  H2/Q using dimensional variables 2, and g3 in figure 10. Also shown is 
the related exact solution 

obtained by using a uniform profile TEl(2J = -96 in (5.1). (Note that the coordinate 
scales vary for the different graphs.) 

It is observed that for high source heights the reversing shear profile results in 
higher ground-level concentrations than the uniform profile over a substantial range 
(for large enough 1x1 it must always be smaller). As the source nears the surface, 
however, the uniform-profile calculation begins to predict the larger surface 
concentrations. 

Consideration of the limit of small source height (h,/h-+O) is particularly useful. 
We note first that the flow at ground level in the reversing case is exactly twice that 
of the uniform one. Furthermore as h,/h --f 0, the peak ground-level concentration for 
the reversing case must become independent of the shear and reversal, depending only 
on the flow speed at ground level. From this we conclude that the ratio of the peak 
ground-level concentrations for the reversing and uniform profiles respectively must 
tend to a limit of 0.5 as h,/h+O. Inspection of figure 10(c,d),  however, reveals that 
the calculated reversed flow ground-level concentrations drop to much less than half 
the corresponding uniform-flow values; indeed by h,/h = 0.1 the ratio is as low as 5. 

We offer an explanation of this failing in our calculation, based on an idea discussed 
by Csanady (1983). He suggested that concentrations near the source should be 
thought of as being made up of two contributions: a primary component C(’)(X) 
resulting from direct advection from the source, and a background component 02)(x), 
resulting from recirculated contaminant returning to the source region. In  general, 
these two contributions will have quite distinct values of ni(x) ,  that of the former 
being considerably smaller. So instead of (5.2) a more realistic description of the 
lateral diffusion will be obtained by supposing 

in obvious notation. This yields a centreline ground-level concentration of 

C?’(., - h )  CP’(., -h )  
(2R):u.lf)(z, -h )  ( 2 R ) t a p ( x ,  -h)’  

C(Z, 0, -h )  = + 
C?’(., -h )  

( 2 R ) b g ’ ( . ,  - h )  
N as h,/h+O. 



202 C. Turfus 

Now we would expect for small source heights that C,(z, - h) x Cc)(x ,  - h ) .  However, 
in evaluating C, and hence a: we cannot similarly ignore Cp) as being small compared 
with Cp). Hence we expect 

i.e. (5.2) will be an underestimate of the more accurate estimate (5.8) of the 
asymptotic limit of peak ground-level concentration as h,/h+O. (An example of this 
is given by Castro & Snyder (1982) from their wind-tunnel experiment. Their figure 
22 shows clearly that for small h,/h the lateral profile of ground-level concentration 
takes on a ‘double Gaussian’ form with a narrow peak superimposed on a broad one. 
Matching such a profile by a single Gaussian one is bound to underestimate the 
centreline concentration.) 

It is our suggestion that a better estimate of centreline ground-level concentration 
for the lower source heights (h,/h < 0.3, say) will be obtained by the more heuristic 
procedure of using in (5.2) a a:@, z )  value calculated for a point source in the uniform 
flow given by 

Extensive numerical computation would probably be necessary to confirm whether 
such a procedure is appropriate in general. Certainly it will yield the correct 
asymptotic limit (5.8). 

An alternative method, suitable if the source is near the stagnation point z = 0, 
is to use the z )  results of Smith (1957) for a ground-level source, but evaluated 
at  z = + h ,  thinking of our reversed layer as his problem upside down. If the shear 
in the layer is uniform to a good approximation, then the result for vg(z,z) is 
particularly simple, being given by an incomplete y function (see his equations (4.3), 
(4.4), (4.25) and (4.26)). 

If, however, we suppose that our first calculation is appropriate for values of 
h, 0.5, computation shows that both the re-nondimensionalized maximum ground- 
level concentration x~~~ = u, c3Dm/A6 and its position 23Dm: = xd@/K are fairly 
constant over this range, and given by 

For the particular case of h,/h = 0.8, the precise value x~~~ = 22 agrees well with 
the value of 24 computed by Turfus (1985) but the value 23Dm = 0.29A is an 
underestimate of the value 0.6A found there, probably reflecting the inadequate 
representation of near-source diffusion implicit in our diffusion equation. 

Expressing our result once more in dimensional notation, we predict that for a 
source at height L - g 3 ,  $6 in a reversed layer in which the diffusivity is K and the 
velocity given by = M3, 23 E [ - K, 01 : 

(5.9) 

Finally, we make a rough comparison with the result of Wilson & Britter (1982) 
for the concentration due to a source on the back wall of a surface-mounted cube 
of height A where the upstream flow velocity is U,. For such a flow configuration, 
three-dimensional effects in the form of streamwise and axial vortices are known to 
be important and, in addition, €/I? x 1.5 so neither of our assumptions of two- 

- (1-1.5) Q (o.04-0.06) 636 
O3Dm x 7 ; 23Dm x 

K 
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dimensionality nor of E % I? hold. It will be seen, nevertheless, that useful results 
appear to be obtained. Based on theory and a survey of wind-tunnel and field studies, 
Wilson & Britter suggest 

X3D (1-5)- 

If we estimate Ax Z? and 0 x U,/l? where U ,  is the maximum ground-level 
backflow velocity in such a situation (typically O.2Um, see Robins & Castro 1977), 
our model yields 

which is quite compatible with Wilson & Britter’s (1982) suggestion. More recent 
evidence from field studies by Jones & Griffiths (1984) suggests 

X3Dm (5-7*5), 

The level of agreement between these experimental results and our simple 
predictions based on knowledge only of the shear and of the width of the reversed-flow 
layer is rather surprising. Our original assumption that reattachment effects can be 
neglected in favour of correct modelling of the local mean flow, for sources located 
well within a recirculating flow, appears to be again supported. 

6. Conclusions 
In this last section an attempt is made to bring together some of the conclusions 

of the preceding analysis. However, it  is worthwhile reminding ourselves beforehand 
of the assumptions subject to which that analysis was carried out. These were: 

(i) that diffusion can be described by the diffusion equation (2.1), and further 
that can be modelled with all diagonal components set equal to constants 
and all non-diagonal components set equal to zero; 

(ii) that mean vertical motions can be neglected for sources in the centre of the 
recirculating wake (and consequently that the effects of reattachment are 
negligible). 

The justification for these assumptions is wholly a poeteriori. In order to decide 
more generally when the second of these assumptions might be justifiable, detailed 
computations involving fully two-dimensional flows would be necessary. An investi- 
gation into the general applicability of the first assumption would be an extremely 
difficult and lengthy task. 

Nevertheless it does appear, from our success in estimating ground-level concen- 
trations in the vicinity of the source, that even if the above assumptions are not 
strictly valid for our problem, their adoption has not seriously prejudiced our results; 
support for our adopted procedure seems to be found even from the example of the 
fully three-dimensional flow behind the surface-mounted cube, for which assumption 
(ii) is obviously inapplicable. The reason why such success was found is not apparent. 
Some explanation might be offered in the case of the two-dimensional flow as to why 
the local as opposed to global mean flow is determinative of the mean ground-level 
concentration. For although the mean flow in this case is such that E % I?, the 
instantaneous flow in the middle of the wake is known to be made up of vortex 
structures whose horizontal as well as vertical scale is O(I?) (Tani, Iuchi & Komada 
1961). Thus the recirculation of contaminant can be considered to occur on a short 
horizontal lengthscale O(A) rather than on the lengthscale O(E) .  This argument, of 
course, does not apply to the three-dimensional flow problem considered, and the 
favourable result in that case may prove to have been more coincidental. 
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The results concerning ground-level concentrations are presented first ; having been 
verified against experiment they are the most reliable conclusions. Further conclusions 
about the broad structure of the concentration field are then presented, subject to 
the supposition that the diffusion-equation solutions are applicable away from, as well 
as at, ground level. Finally, some suggestions are made about related problems which 
can be tackled by methods similar to those described above. 

6.1. Results for ground-level concentration 
Our analysis yields the interesting result that an upper limit to the flux of recirculated 
contaminant in a backward-flowing layer width 6 at the location of a line-source 
strength Q per unit length is Q .  For most practical applications, however, a value 
of iQ is unlikely to be exceeded. A reasonable first approximation to the concentration 
in the backward-flowing layer to the right of the source is then 

The concentration to the left of the source can in turn be estimated by adding to this 
the contribution resulting from a simple plume. 

For a line-source located in the top half of the reversed-flow layer the maximum 
ground-level concentration and its streamwise location are as expressed in (3.1). The 
corresponding results for a point-source subject to the same conditions are expressed 
in (5.9). Cases involving sources in the lower half of the reversed-flow layer require 
more careful calculation, particularly cases involving point sources because of the 
associated difficulties, discussed in $5,  of representing the lateral spread. 

It has been found that longitudinal diffusion is important in determining the 
ground-level concentration immediately below the source (compare curves 3 and 4 
of figure 6) but otherwise it has little effect on the ground-level concentration. This 
being the case, the major influence that the magnitude of the vertical diffusivity has 
on the ground-level concentration is in the scaling of the horizontal coordinate, i.e. 
if K increases, the streamwise position of the maximum of ground-level concentration 
moves proportionally closer to the source but its magnitude remains fixed. 

The fact that the uniform shear (p = i ) ,  which is a better model of the real mean 
flow in the reversed-flow layer, furnishes better results than the step profile (B = 0) ,  
suggests that the correct modelling of the mean flow in the reversed layer may be 
critical in estimating ground-level concentrations. 

It can be seen that, since concentration is inversely proportional to flow velocity, 
the effect of decreasing the speed in both layers proportionally is to increase all 
concentrations by the same proportion. However, when the velocity in the upper layer 
was decreased, with that in the lower layer held fixed, a monotonic increase in the 
ground-level concentration was observed. As the velocity in the upper layer tended 
to zero, an asymptotic ground-level-concentration profile was approached. Finally, 
the observed effect of lowering the source height was to increase the maximum of 
ground-level concentration and bring it closer to the source region; a tendency for 
the concentration immediately below the source simultaneously to decrease was 
explained by the absence of horizontal diffusion and would certainly not have been 
observed had horizontal diffusion been incorporated into the model. 

6.2. Structure of the concentration field 
For the purpose of discussing the general structure of the concentration field, this 
has been divided schematically into five regimes, as indicated in figure 11.  These are 
dealt with separately below. 
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FIQURE 11.  Five regimes of concentration field. 

I. In  the near-source region the concentration field has the character of a plume, 
which dips towards and then moves along the surface. The plume descent observed 
in figure 5 for the case of a uniform mean shear is much faster than would result from 
the influence of an image plume. This is because of a combination of two effects: firstly 
the tendency noted by Okubo t Karweit (1969) for the position of maximum 
concentration of a plume in a shear to  shift in the direction of increasing velocity 
as one moves downstream; secondly, the tendency for a plume beneath a counter- 
flowing stream to be eroded at one side as contaminant is preferentidly removed by 
the stream. 

11. Further to the left of the source, there occurs an exponential decay of 
concentration with increasing 6,. This decay occurs in a distance of O( U,  h 2 / ~ )  where 
U, is a typical backflow velocity, E is the layer width and K is an estimate of the 
effective vertical turbulent diffusivity . It should be noted that in practical applications, 
this exponential decay will in most cases be interrupted by the onset of vertical mean 
motion. Nevertheless, all contaminant must eventually be advected away to the right. 

111. In the region above the source, away from the reversed layer, there occurs 
an exponential decay with height 6,. From the form of (A 9b)  this can be seen to occur 
in a distance of O(6/(pl f i ) l la )  where a is as defined in the Appendix, i.e. a = 1 +g, 
and pr  is the smallest root of (A 7) and so is a function of both fl  and r. Two special 
cases are of note: firstly, the limit as r = U2/Ul+0  for which decay occurs over a 
distance O ( h / P l ( l + I ) )  ; secondly, the more practically interesting limit of 
r = U 2 / U l +  00 for which decay occurs over a distance O(h/Plc3+n) .  

IV. To the right of the source but away from the surface, the concentration in the 
plume is approximately described by the solutions calculated by Smith (1957) for a 
ground-level source in a non-reversing shear flow, the effective origin in our case being 

V. In  the region near the surface to the right of the source, a dilution of the 
concentration occurs due to the reverse flow returning low concentration fluid 
towards the source. Thus at no streamwise station to the right of the source is the 
concentration profile found to reach a maximum at the surface. Our calculations 
based on the case /? = 0 suggest that the maximum will in fact tend to occur at a 
distance O(k!7,/U2) above the reversed-flow layer. 

(6172.3) = (0,O). 

6.3. Related problems 
Finally, although not presented here, other solutions can be found, by similar 
techniques, for the following problems adapted from the one presently considered: 
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(i) absorbing boundary, by replacing the condition aC/az = 0 by C = 0 on z = - h 
(equation (2.7b)); 

(ii) source outside the reversed-flow region (note that the solutions (2.16) and (2.21) 
actually apply to sources inside or outside the reversing layer) ; 

(iii) buoyant contaminant (well diluted) by adding the term w aC/& to the left-hand 
side of (2.6a, b), where wU, @ is a terminal rise (or fall) velocity for the contaminant 
particles ; 

(iv) a solution is presented by Turfus (1985) for a parabolic diffusivity profile with 
a non-zero value at ground-level in the case /? = 0 (uniform-velocity profiles). This 
appears to be the only easily soluble case involving variable diffusivity. 

The first two of these problems have solutions which are merely analogues of 
solutions described above ; the third and fourth are less obvious and require some 
additional calculation. Only the last of these solutions has been calculated in detail 
by the author. 

I would like to extent my thanks to my research supervisor, Dr J. C. R. Hunt, 
for his help in preparing this paper; also to Dr R. Smith for encouragement and 
advice about tackling the problem ; and finally to  the British Gas Corporation who 
funded the research through their Research Scholarship scheme. 

Appendix : General solution for diffusion equation with counter-flowing 
mean flow profiles governed by power laws 

is more convenient to express the solution with the notation 
We solve the problem given by (2.6) with boundary conditions given by (2.7). It 

B = 2 a - 2 ;  r = y 2 " .  
We suppose only that a > 1.  

Taking a Fourier transform, and putting c2 = ik, (2.6) becomest 

- 6( z + zo ) 
) Z 1 2 " - - p o + + z z  = ( - h  < 2 < 0, 2A 

y 2 " Z 2 " - 2 p o - o z z  = 0 (2 > 0). (A 2) 

The solutions to (A 1)  with right-hand side = 0 are linear multiples of 

(Bender & Orszag 1978 p. 573). The solution to  (A 2) satisfying C-tO as Z+OO is a 
multiple of 

z i K ~ (  a). "rzl" 

For the region - z o  < z < 0 we need to  form a solution which satisfies contimity 
of C? and a+/& with the solution for z > 0. By expanding the Bessel functions J+( l l za)  
and K(1,2a) for small argument, we see the form of solution required is I z 1 yp)(&! I z I "/a) 
where 

? p ( u ) :  = y-"*(u)+ytJ&(u). (A 3a) 

t Here and elsewhere subscripts x, y and z denote partial derivatives with respect to these 
variables. 
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In order to preserve symmetry we define a second linearly independent solution 
applicable to - h < < - zo by 1 z )i yf)(EI z 1 " / a )  where 

yP'(u) = r-LJ+Ju)-$J3,(u). (A 3b) 
We shall need the Wronskian of these two solutions; this can be seen to be: 

where 

The solution for - h Q z < - z,, must have the form 

where e(LJ is specified so that the solution satisfies ac/az 1 z--h = 0. That is, we must 
have 

From (A 3)-(A 5) we can construct a Green function solution for -h  < z < 0:  

The solution for z > 0 matching onto (A 6b) is 

The expressions in (A 6) can be inverse transformed using (2.11). For x < 0, we use 
Cauchy's theorem to transform the k-integration path onto the contour C, depicted 
in figure 3.t The integral can then be evaluated as a sum of the residues at the poles 
on the imaginary k-axis. The poles occur when the denominator of O(6) in (A 5 )  is 
zero, i.e. at 5 = apn/ha where b,, : n = 1,2,3,  . . .} is the set of all values ofp satisfying 

t We have assumed that O(5) has no singularities in the region 9 = 15: argSE(0,ix) U (-x, 0)). 
A proof of this assertion can be built up along the following lines. We note first that the real 5 axis 
is a Stokes' line for the function, f(5) = a/&@ yP)(f;u"/a)) I u-h ; this function satisfies If(() I + 00 

as ( X I +  00 for 5~9. Then all zeros off in 9 must satisfy 151 erg5 < R, for some R > 0. Consider 
f = q5 + i$, where q5, fi are real and harmonic since f is analytic away from 0. We see that since 
fi = 0 on the real axis, the lines of q5 = 0 cut the real [-axis a t  right angles, a t  the zeros off (denoted 
pn in the text). Any zero off away from the real [-axis implies the existence of a ($ = 0)-line cutting 
the (q5 = 0)-lines at  right-angles: such lines must be constrained to go to 00 within 9 or else pass 
through the real &axis, neither of which is possible. For, since thepns are unbounded, lines of fi = 0 
going to co in 9 would imply unbounded zeros off in 9, contradicting our previous assertion (unless 
the line asymptotes to the real &xis which, from the asymptotic form of f(5) can be shown not 
to happen) ; on the other hand, (@ = 0)-lines in 9 C r t n n O f  meet the real &axis (except at  the origin) 
because it is itself a ($ = 0)-line and such lines cannot meet at  a regular point off. 
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We need 

where we have used (A 5), (A 7)  and the fact that Izlayf)(tlzla)/a satisfies (A 1 )  with 
the right-hand side = 0. 

The solution for - h < z < - zo, which by symmetry also holds for - zo < z < 0, 
can then be written 

From (A 8 )  and the fact that (from (A 4) and the definition of the p n )  

we conclude: 

Similarly from (A 6c) 

On putting y = 1 ,  a = i, these expressions can both be shown to reduce to (2.16a). 
For the case x > 0 we put E = u efiX in (A 6) and deform the k-integration path 

onto C, (see figure 3). For -h  < z < -zo, (A 6 a )  substituted into (2.11) yields 

The complex arguments of yf)( .) and O( .)  can be dealt with by noting 

J,(iz) = eiim Iv(z), 
(Bender & Orszag 1978 p. 572). Making this substitution, after some lengthy algebra 
and taking the real part, we obtain 

e-U2zMu(IzI, h) M,(z,,h)udu 

I '  (A9c)  
71 

q x ,  2 )  = JOw 

[ y f ; ( h ; ~ ) ~ + Z  cos-f;(h;u) 2a f I_(h;u)+y-lfl_(h; u), 

where we have used the notation: 

M,(z ,h)  :=f+@; u)fI(h;u)-f-(z;u)f;(h;u), 
and f '  (. ; u) denotes differentiation with respect to the first argument. 

A similar expression holds for x > 0, z > 0.  
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